5,627 research outputs found

    Simple biophysics underpins collective conformations of the intrinsically disordered proteins of the Nuclear Pore Complex

    Get PDF
    Nuclear Pore Complexes (NPCs) are key cellular transporter that control nucleocytoplasmic transport in eukaryotic cells, but its transport mechanism is still not understood. The centerpiece of NPC transport is the assembly of intrinsically disordered polypeptides, known as FG nucleoporins, lining its passageway. Their conformations and collective dynamics during transport are difficult to assess in vivo. In vitro investigations provide partially conflicting results, lending support to different models of transport, which invoke various conformational transitions of the FG nucleoporins induced by the cargo-carrying transport proteins. We show that the spatial organization of FG nucleoporin assemblies with the transport proteins can be understood within a first principles biophysical model with a minimal number of key physical variables, such as the average protein interaction strengths and spatial densities. These results address some of the outstanding controversies and suggest how molecularly divergent NPCs in different species can perform essentially the same function

    Empirical regularities of opening call auction in Chinese stock market

    Full text link
    We study the statistical regularities of opening call auction using the ultra-high-frequency data of 22 liquid stocks traded on the Shenzhen Stock Exchange in 2003. The distribution of the relative price, defined as the relative difference between the order price in opening call auction and the closing price of last trading day, is asymmetric and that the distribution displays a sharp peak at zero relative price and a relatively wide peak at negative relative price. The detrended fluctuation analysis (DFA) method is adopted to investigate the long-term memory of relative order prices. We further study the statistical regularities of order sizes in opening call auction, and observe a phenomenon of number preference, known as order size clustering. The probability density function (PDF) of order sizes could be well fitted by a qq-Gamma function, and the long-term memory also exists in order sizes. In addition, both the average volume and the average number of orders decrease exponentially with the price level away from the best bid or ask price level in the limit-order book (LOB) established immediately after the opening call auction, and a price clustering phenomenon is observed.Comment: 11 pages, 6 figures, 3 table

    The Solar--Stellar Connection

    Full text link
    Stars have proven to be surprisingly prolific radio sources and the added sensitivity of the Square Kilometer Array will lead to advances in many directions. This chapter discusses prospects for studying the physics of stellar atmospheres and stellar winds across the HR diagram.Comment: to appear in "Science with the Square Kilometer Array," eds. C. Carilli and S. Rawlings, New Astronomy Reviews (Elsevier: Amsterdam

    Magnetization dynamics and its scattering mechanism in thin CoFeB films with interfacial anisotropy

    Full text link
    Studies of magnetization dynamics have incessantly facilitated the discovery of fundamentally novel physical phenomena, making steady headway in the development of magnetic and spintronics devices. The dynamics can be induced and detected electrically, offering new functionalities in advanced electronics at the nanoscale. However, its scattering mechanism is still disputed. Understanding the mechanism in thin films is especially important, because most spintronics devices are made from stacks of multilayers with nanometer thickness. The stacks are known to possess interfacial magnetic anisotropy, a central property for applications, whose influence on the dynamics remains unknown. Here, we investigate the impact of interfacial anisotropy by adopting CoFeB/MgO as a model system. Through systematic and complementary measurements of ferromagnetic resonance (FMR), on a series of thin films, we identify narrower FMR linewidths at higher temperatures. We explicitly rule out the temperature dependence of intrinsic damping as a possible cause, and it is also not expected from existing extrinsic scattering mechanisms for ferromagnets. We ascribe this observation to motional narrowing, an old concept so far neglected in the analyses of FMR spectra. The effect is confirmed to originate from interfacial anisotropy, impacting the practical technology of spin-based nanodevices up to room temperature.Comment: 23 pages,3 figure

    Enhancing Adversarial Example Transferability with an Intermediate Level Attack

    Full text link
    Neural networks are vulnerable to adversarial examples, malicious inputs crafted to fool trained models. Adversarial examples often exhibit black-box transfer, meaning that adversarial examples for one model can fool another model. However, adversarial examples are typically overfit to exploit the particular architecture and feature representation of a source model, resulting in sub-optimal black-box transfer attacks to other target models. We introduce the Intermediate Level Attack (ILA), which attempts to fine-tune an existing adversarial example for greater black-box transferability by increasing its perturbation on a pre-specified layer of the source model, improving upon state-of-the-art methods. We show that we can select a layer of the source model to perturb without any knowledge of the target models while achieving high transferability. Additionally, we provide some explanatory insights regarding our method and the effect of optimizing for adversarial examples using intermediate feature maps. Our code is available at https://github.com/CUVL/Intermediate-Level-Attack.Comment: ICCV 2019 camera-ready. Imagenet results are updated after fixing the normalization. arXiv admin note: text overlap with arXiv:1811.0845
    • …
    corecore